Tag Archives: Medicine

Science Roundup – June 7, 2014

Starting with today’s edition, Sciberomics will present a weekly roundup of science research from around the globe.

ASCO Annual Meeting

This past week was super-busy – science-wise, with the NIH grant deadline, many significant papers being published, and the American Society of Clinical Oncology (ASCO) annual meeting in Chicago, IL. The fun of having to work on an NIH grant notwithstanding, my experience at ASCO makes me say that it was indeed an awesome meeting. Scientists and clinicians presented some very exciting research. To list all the important studies presented at ASCO would make this post a #longread. But here I am listing only a few of the many important clinical research studies that featured at this meeting:

Adjuvant Ipilimumab Significantly Improves Recurrence-Free Survival in Patients With High-Risk Stage III Melanoma

PD-1–Targeting Antibody Pembrolizumab Produces Long-Term Responses in Patients With Metastatic Melanoma

Cediranib Plus Olaparib Significantly Increases Progression-Free Survival in Women With Recurrent Ovarian Cancer

Chemotherapy Plus Either Bevacizumab or Cetuximab Results in Similar Survival Benefits in Metastatic Colorectal Cancer

Research News

There were several other notable developments in the research world of biology and medicine this week.

Science Research Clinical Medicine

Weekly science roundup (Image credit: ASBMB.org)

Increasing analyses of microbes from different locations in the human body has helped us understand the importance of the human microbiome. Now a study published in this week’s Nature (June 4, 2014) shows how early childhood malnutrition affects the maturation of gut microbes. Moreover, even after correcting this early malnutrition with diet, gut microbes do not sufficiently recover from the early insult and may require additional intervention.

A study published in Science (June 6, 2014) presents an innovative computational model that predicts when embryonic stem cells will self-renew or differentiate in culture. This model identifies, with high accuracy, a small number of transcription factors that can drive the stem cells either to pluripotency or to differentiation.

A new development in stem cell biology may signal a major advance for regenerative medicine. Scientists at Harvard show that by using Laser, they can stimulate human dental stem cells to differentiate and produce tissue regeneration. This research has implications for regenerative medicine for a variety of clinical applications.

The world of 3-D printing is witnessing exciting advances. Now to add to this excitement, scientists in Boston have been able to create synthetic blood vessels using 3-D printing. All the possible applications that this development can result in, makes it very noteworthy.

If you are planning for that late-night movie or an all-night work session, think again. It is very important to get a good night’s sleep or you risk developing Alzheimer’s disease. The findings of a recent randomized clinical trial published in JAMA Neurology show that sleep deprivation increases levels of the protein beta-amyloid, which in turn increases the risk of Alzheimer’s.

With the increasing use of computers, tablets and smartphones, handwriting is becoming a lost art. But now scientists and psychologists have research that shows how handwriting is important for brain development in kids and for increased understanding. “New evidence suggests that the links between handwriting and broader educational development run deep.”

Science Business News

Genomics being the new kid on the block, sequencing technology takes center stage today. Seeking to further expand its reach in molecular diagnostics to sequencing, Swiss pharmaceutical giant Roche acquired Genia Technologies Inc. DNA sequencing firm.

In the research world of today, collaborations, mergers, and acquisitions have become the key to success and survival. As a testament to this, we are witnessing a number of collaborations among different groups.

  1. Sysmex Inostics is collaborating with Merck to develop and commercialize a biomarker test (RAS kit) for patients with metastatic colorectal cancer.
  2. NanoString and Celgene are collaborating to develop a companion diagnostic to support the clinical validation of the drug lenalidomide (REVLIMID) used for the treatment of diffuse large B-cell lymphoma (DLBCL).
  3. AstraZeneca’s MedImmune is developing a novel immune therapy for patients with non-small cell lung cancer (anti-PD-L1 therapy – MEDI4736). Now Roche’s Ventana has established collaboration with MedImmune to develop a companion diagnostic for this drug MEDI4736 that is currently in clinical studies.

Sciberomics – The Inception

Revolution! It drives radical transformation.

The omics revolution over the past decade has been a tour de force leading to unprecedented advances in biomedical sciences. Omics is a generic term for all fields of biomedicine with the suffix –omics. For instance, genomics indicates study of genome, epigenomics indicates study of epigenetic modifications, and so on for other fields such as proteomics, transcriptomics, microbiomics, metabolomics, etc. (each of these words deserves a separate blog post and will get one in due course). Advances in these areas have arguably been the most disruptive innovations of our time.

Breakthroughs in Biomedical Sciences

Technological innovations in the nineties spurred rapid development of the omics field, leading to a never-before-seen “intersection of biology and technology” (“Steve Jobs” by Walter Isaacson, 2011). The international Human Genome Project was a key landmark or rather, a precursor of this revolution. What started out as an extremely expensive venture has now made genome sequencing affordable enough for routine clinical application (almost!). The cost of sequencing has dropped precipitously, from $3 billion in the late nineties to approximately $1000 for a single genome today. This rate of advancement in sequencing technologies has truly defied Moore’s law.

Newer technologies and their application to biomedical research meant more and more data generated everyday. Making sense out of these data required additional technologies, which in turn, drove systematic evolution of a specialized field – computational or quantitative biology. This discipline uses techniques in physics, mathematics, computer sciences and related branches to decipher riddles in biology. Today, closely related interdisciplinary branches such as bioinformatics, systems biology, and network pharmacology have emerged. These varied branches are driving progress by analyzing and interpreting the tremendous amounts of data generated in the omics world.

Projects in academia and in industry are becoming increasingly collaborative in nature. Successfully translating these research findings into the clinic is critical to providing more effective treatment options for many diseases. These developments are poised to make personalized medicine or individualized medicine a reality.

Science, Medicine, Sequencing, Biology, Cancer

Sciberomics – Snapshots of Science and Life (Image by author)

Sciberomics and Science Outreach

In light of the interdisciplinary research and its application to humans, science communication assumes a vital role. Not only does it inform curious minds, but it also serves as an antidote to ignorance and misinformation. It spreads public awareness about science and facilitates dialog between peers. Science outreach is critical to driving public opinion, which can, directly and indirectly influence policy and funding. Add to that the availability of innumerable platforms for communication, and one would have to agree that there has been no better time for science writing.

All this has prompted me to join the world of active blogging. I am really excited to launch my new blog, and to use this platform to communicate science. How did I decide on a name for the blog? Well, I have to confess I am guilty of neologizing. I wanted the name to reflect the fact that this blog will communicate science, in cyberspace. Though I intend to cover all areas of science, I realize that I may end up being partial to the omics field. Taking all these factors into consideration, the newly minted word Sciberomics seems like a good fit as a name.

At Sciberomics, I will discuss recent developments in biology and medicine, focusing on how they affect human life. Blog posts will include studies that are hot off the press, areas that are mired in controversies and topics that are hotly debated. Active discussion and feedback from readers, in the form of comments are welcome and will provide flavor to the blog. The aim of Sciberomics is outreach to peers and non-scientific audience alike.

So, here goes Sciberomics – Snapshots of Science and Life. Welcome!